Market R Res

Market design in the long term: high shares of renewables penetration and security of supply

Aurèle Fontaine, Frédéric Galmiche - RTE

Challenges of a capital-intensive power system

Low-carbon and peaking technologies involve large proportions of fixed costs

Split cost of the energy generated for different technologies

Costs given usage factors in an optimized generation mix.
Cost hypotheses: EIA | CO2 price: $30 € / \mathrm{t}$
Market RES

The unit cost of capital-intensive technologies is much more responsive to the WACC level

Compared LCOE of wind, PV and CCGT as a function of the WACC (load factor: 50%, CO2 price: $30 € / \mathrm{t}$) Data : Market4RES WP5 cost hypotheses

MarketodRES

What about WACC?

$$
W A C C=\frac{K}{K+D}\left[r_{f}+\beta\left(r_{m}-r_{f}\right)\right]+\frac{D}{K+D}\left(1-\tau_{t a x}\right) \cdot r_{d}
$$

What about WACC?

$$
W A C C=\frac{K}{K+D}\left[r_{f}+\beta\left(r_{m}-r_{f}\right)\right]+\frac{D}{K+D}\left(1-\tau_{t a x}\right) \cdot r_{d}
$$

Specific risk (revenues' variability): maximum share of debt in the project

Decarbonizing power

 is RES support here to stay?
Support schemes: how do they help?

Investment support make

Revenues \longrightarrow

projects more attractive by reducing their costs
Subsidy /MW upfront: only part of the cost remain at the expense of the producer

Financial guarantee: access to cheaper capital

Operating aid (MWWh) make projects

more attractive by increasing their expected revenues and often also by making future revenues more certain, therefore granting access to cheaper capital.

Arbitrage between risk and incentives

Level of exposure to wholesale market prices
\rightarrow Here we focus on the risk part: the value of incentives is not explored \leftarrow

Market risks in RES projects, according to the nature of the support scheme

Volume
Market

Volume
Investment subsidy

Volume
Green certificates

Volume
Floating FIP

Volume
Fixed FIP

Volume
FIT
\square Volume risk and price risk
Volume risk alone

Volume risk and profile risk
No risk
Market RES

Taking risk into account WACC hypotheses used in WP5 study

WP5 'reference' and 'high' scenario hypotheses

Conventional technologies: 8 \%
RES technologies, computed based on conclusions from the Beyond 2020 European project

- 8% if all revenues come from the market (including ETS)
- FIT: 6,2 \%

Beyond2020
unmodified
hypotheses

For sensibility analysis: "optimistic" hypotheses

Conventional technologies: 9,8 \%

- $\quad 9,8 \%$ if all revenues come from the market (including ETS)
- FIT: 7,5 \%

Conventional technologies: 10 \%

- 10 \% if all revenues come from the market (including ETS)
- FIT: 5 \%

Back to WACC

The WACC computed given the following hypotheses:

r_{f}		r_{m}	${ }^{r_{d}}$	Corp tax
	$2,0 \%$	$8,5 \%$	$2,0 \%$	35%

Market? Res

Back to WACC

The WACC computed given the following hypotheses:

r_{f}		r_{m}	${ }^{r_{d}}$	Corp tax
	$2,0 \%$	$8,5 \%$	$2,0 \%$	35%

Modelling assumptions

Methodology

Reference

WP5 High RES scenario:
$95 € / \mathrm{tCO}_{2}+$ RES capacities
$\sim 250 \mathrm{MtCO}_{2}$ ($=150 \mathrm{~g} / \mathrm{kWh}$)

Cheapest mix to reach $250 \mathrm{MtCO}_{2}$?

Support scheme options

Market + CO2 price from Cap \& Trade

Market design variants
\longrightarrow
CO2 price from cap \& trade
(ETS) and no RES target
\longrightarrow RES targets and support, no CO_{2} price
\longrightarrow RES targets and support $+\mathrm{CO}_{2}$ cost from a tax or a price floor on the ETS

Different CO_{2} cost levels
National targets, technologyspecific v. regional targets, technology-neutral

Results:

Carbon price + Regional, technology neutral target and support
Total costs, excl. CO2 (Bn€)

Market RES

Results:

Carbon price + National, technology specific targets and support

Market RES

Results:

Comparison of unit cost of electricity

Unit cost of electricity as a function of the support mechanism's design

Results:

Comparison of unit cost of electricity

Unit cost of electricity as a function of the support mechanism's design, compared with the unit cost in the case of quotas

Efficiently tackling security of supply

in an internal market context

Capacity markets are a not so rare feature in the electricity industry

In Europe and around the world, plenty of capacity mechanisms (CM) have been implemented besides energy markets, or are planned to be implemented soon.
CM Precursors: Sweden, PJM in the USA, Colombia, Ireland, Spain, Italy, Portugal, and Chile
Recently implemented CM, building on previous experiences: Great Britain, France, Belgium
Design underway in: Poland, Denmark, Germany
EU Commission's sectorial survey interim report describes 28 capacity instrument in 11 surveyed countries!

Market?RES

A modelling approach to investments under a capacity mechanisms

Features of the study

- France alone
- 2015-2030, given increase in RES capacities
- Investment decisions taken with a 5 years forward looking
- Withdrawal/mothballing decisions
- Capacity obligation computed on the basis of 3 hours of LOLD
No risk aversion implemented

Capacity mechanisms to ensure security of supply...

Total costs including new investments for each scenario and market design, averaged over the 21 years of the simulation.
EOM20 and CM are equivalent (differences due to the granularity of investment decisions). Important remark: the impact of risk on WACC is not taken into account here.

Market RES
-
... while keeping the peaking plants' risk to an acceptable level

Variability of the revenues of a peaking generating unit across all weather scenarios (avg. over the 21 years of the simulation)
Risk mitigation through CM should result in a lower total cost with CM than under EOM20

Market RES

Relevance of capacity mechanisms

\rightarrow A capacity mechanism

- Ensure adequacy and increases the social welfare when compared with an energy-only market with a 3000 €/MWh cap
- Reduces the risk of investments in peaking generating units in comparison to an energy-only market allowing very high electricity prices
\rightarrow Very high price cap on the market are a theoretical instrument. They should be perfectly efficient but in practice, it is very difficult to calibrate them and they bring a lot of risk.

The market design of capacity mechanisms

CMs designed in many different ways.

In WP3, we have:

- analyzed some of these mechanisms,
- and then adopted five design criteria, as follows:

Cross-border capacity mechanisms

The merits of these options have been assessed in WP3

	Single and homogeneous CRM for all Europe	Statistical account of the interconnections	Participation of foreign capacities	Different isolated CRM
Efficiency	Fair	Fair / Good	Fair / Good / Very Good	Poor
Implementability	Poor	Good	Fair	Fair
 transparency	Poor	Very Good	Fair	Very Good
Fainess	Good	Poor	Fair	Poor

Cross-border capacity mechanisms

Probability that capacity interconnection are saturated when France imports energy in case of supply shortage

Conclusion

- Germany, Switzerland, Italy and Spain:
NTC interconnections are limited flows in almost all situations
- Great Britain:

NTC interconnection is often reached

- Belgium :

Security of supply shortages conditions are similar

Cross-border capacity mechanisms

There are many options to implement X-border participation in capacity mechanisms, such as:

- Implicit participation of interconnections and of abroad capacities in the CM ;
\rightarrow Provides efficient economic incentives but only at national level, so limits perspectives of regional integration...
- Explicit participation of abroad capacities (including demand response) in the CM ;
- Explicit participation of interconnections in the CM ;
- Explicit participation of both interconnections, abroad capacities (including) demand response in the CM.

Market RES

Cross-border capacity mechanisms

The theory:

explicit participation of both interconnections, abroad capacities (including demand response) in the CM should be the target

To put this option into force, some legal and economic matters remain to be solved at a national and European level.

For instance, the case of simultaneous supply shortage in two countries raises governance issues about the effective contribution of abroad generators or demand response.
The verification of the services provided by foreigner generators and demand response brings up legal and technical issues. Thus, the effective contribution of the capacities to one national security of supply or to the other is difficult to evaluate.

Cross-border capacity mechanisms

A target mechanism could rest upon:

The allocation of access rights to interconnection capacities to some producers or demand response operators installed outside of the national network
\rightarrow Such access rights are essential to the participation of those capacities to the national security of supply,

The definition of certificates for generators, or demand response installed outside of the national network.

Cross-border capacity mechanisms

The 42nd article of the 2009/72/CE directive allows member States to take extreme action in case of necessity...
"In the event of a sudden crisis in the energy market and where the physical safety or security of persons, apparatus or installations or system integrity is threatened, a Member State may temporarily take the necessary safeguard measures. Such measures must cause the least possible disturbance in the functioning of the internal market and must not be wider in scope than is strictly necessary to remedy the sudden difficulties which have arisen.
... nevertheless, the directive n° 2005/89/CE strengthens that member states could not in this case be inequitable between national and international contracts:
"In taking the measures referred to in Article 24 of Directive 2003/54/EC and in Article 6 of Regulation (EC) No 1228/2003, Member States shall not discriminate between crossborder contracts and national contracts."

Market $\underset{\substack{0 \\ R E S}}{ }$

Cross-border capacity mechanisms

A pragmatic approach would consist in developing an explicit participation of interconnections only

- solution selected in Great Britain
- contains a good balance between:
- the necessity of taking into account international help to the security of supply
- and the legal and technical issues.

This choice has been analyzed in the same way by the European Commission (SA. 35980 - C (2014) 5083):

"The Commission recognizes the complexities of effectively allowing cross border participation in a capacity mechanism. The Commission welcomes the commitment of the UK to facilitate the participation of interconnectors [...]. The Commission recalls that the EEAG require schemes to be adjusted in the event that common arrangements are adopted to facilitate cross border participation in such schemes."

COORDINATOR

(2) SINTEF

PARTNERS

FHENDS OFTHE
 SUPERERTD

CONTACT

Market4RES@sintef.no

Results, event calendar and all related news can be found on: www.market4RES.eu

Market RES

Co-funded by the Intelligent Energy Europe
Programme of the European Union

Thank you very much for your attention

