Effects of RES support mechanisms on short-term markets

Post 2020 evolution of the Target Model: Quantitative assessments

Fernando Banez-Chicharro and Luis Olmos Camacho
Institute for Research in Technology (IIT) – Universidad Pontificia Comillas

19th May 2016
Overview

- Objective
- Methodology
 - ROM model
 - Scope
- RES support mechanism
- Results
- Conclusions
Objective

- Analyze performance in the short-term of different RES support schemes
 - Long-term clean capacity auctions
 - Feed-In-Premium fixed
 - Feed-In-Premium floating
 - Long-term clean energy auction
Methodology

Input data
• Installed capacity
• Generation characteristics

Without RES support mechanism

Operation model (ROM)

Optimal operation

Compute required RES support

Operation model (ROM)

Operation
• Production
• Marginal prices

Invest cost
Recovery?

Compare results to optimal operation
Methodology: ROM model

- Operation model developed in IIT-Comillas
- Used in other EU projects
 - MERGE, SUSPLAN, TWENTIES...
- Unit commitment: represent day-ahead market
 - Technical constraints generation units: thermal and hydro
 - Operating reserves
 - Network
Methodology: scope

- Spain, France and Portugal in 2030
 - 1 year – 8,760 hours
 - Vision 3 TYNDP 2014
- Generation
 - Detailed generation units in Spain, France and Portugal
- Not real-time operation
- Network
 - No internal network
 - Interconnections between countries
Methodology: RES support schemes

- Long-term clean capacity auction
 - Provide subsidies out of the market
 - Based on capacity
 - Revenue obtained by subsidy is guaranteed
 - It does not depend on energy dispatched
 - Agents do not have incentives to dispatch more
 - Offers do not change
Methodology: RES support schemes

- Feed-In-Premium: fixed
 - Apply a premium over market price
 - Different for each country and technology
 - Revenue depends on the energy sold in short-term market
 - Incentive to produce more energy
 - Change in the offers

\[
Revenue(g, h) = Production(g, h) \cdot [market_price(h) + premium(g)]
\]

\[
Offer(g) = marginal_cost(g) - premium(g)
\]
Methodology: RES support schemes

• Feed-In-Premium: floating
 • Premium = reference value – reference market price
 • Conditions:
 • Reference market price computed for long period
 • Energy remunerated does not depend on energy dispatched (gross production)
 • Agents do not have incentives to dispatch more
 • Offers do not change

\[
Revenue_{\text{support}}(g) = \text{Gross}_\text{Production}(g) \cdot [\text{ref}_\text{value}(g) - \text{ref}_\text{market}_\text{price}(g)]
\]

\[
Revenue_{\text{market}}(g, h) = \text{Production}(g, h) \cdot \text{market}_\text{price}(g, h)
\]
Methodology: RES support schemes

- **Long-term clean energy auction**
 - Pre-determined amount of energy sold in the long-term
 - Premium over the market to this energy
 - We assume 50% of potential energy
 - Whole amount of energy remunerated at market price
 - Obligation to generators to produce the energy sold in the long-term
 - Change their offers to guarantee the dispatch
 - Hours with most probability to be dispatched and obtain higher revenue in the market: expensive hours
Results: revenues without support scheme

- OtherRES technologies require support
 - OtherRES obtains very low incomes due to its low generation
- France generation requires support
 - Wind and solar also

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Spain</td>
<td>3,378</td>
<td>3,378</td>
<td>1,400</td>
</tr>
<tr>
<td>Solar</td>
<td></td>
<td>2,700</td>
<td>2,700</td>
<td>534</td>
</tr>
<tr>
<td>OtherRES</td>
<td></td>
<td>57</td>
<td>2</td>
<td>-3,271</td>
</tr>
<tr>
<td>Wind</td>
<td>France</td>
<td>2,003</td>
<td>2,003</td>
<td>985</td>
</tr>
<tr>
<td>Solar</td>
<td></td>
<td>882</td>
<td>882</td>
<td>-1,433</td>
</tr>
<tr>
<td>OtherRES</td>
<td></td>
<td>215</td>
<td>91</td>
<td>-2,463</td>
</tr>
<tr>
<td>Wind</td>
<td>Portugal</td>
<td>176</td>
<td>176</td>
<td>75</td>
</tr>
<tr>
<td>OtherRES</td>
<td></td>
<td>3</td>
<td>0</td>
<td>-94</td>
</tr>
</tbody>
</table>

System	Average price [€/MWh]
Spain | 104 |
France | 60 |
Portugal | 110 |

Market RES
Results: system operation

- Capacity auction and FiP floating have same operation that optimal
- Application of fixed FiP
 - OtherRES produces more (0% to 9%)
 - Replaces nuclear and CCGTs

Optimal

FiP fix

- Nuclear
- Coal
- GT
- CCGT
- Oil
- OtherNonRES
- Hydro
- Wind
- Solar
- OtherRES
Results: system operation

• Application of energy auction
 • OtherRES replaces CCGTs
Results: market prices

- Spain and Portugal are very correlated
- FiP (fixed) and energy auction reduce prices
 - Especially in France
Results: market prices

FiP fix

<table>
<thead>
<tr>
<th>Units</th>
<th>Location</th>
<th>Unitary revenue [€/MWh]</th>
<th>Marginal price [€/MWh]</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Spain</td>
<td>97.2</td>
<td>97.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Solar</td>
<td>Spain</td>
<td>97.6</td>
<td>97.6</td>
<td>1.0</td>
</tr>
<tr>
<td>OtherRES</td>
<td>Spain</td>
<td>245.4</td>
<td>98.4</td>
<td>2.5</td>
</tr>
<tr>
<td>Wind</td>
<td>France</td>
<td>85.7</td>
<td>46.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Solar</td>
<td>France</td>
<td>135.0</td>
<td>43.0</td>
<td>3.1</td>
</tr>
<tr>
<td>OtherRES</td>
<td>France</td>
<td>236.2</td>
<td>46.7</td>
<td>5.1</td>
</tr>
<tr>
<td>Wind</td>
<td>Portugal</td>
<td>103.2</td>
<td>103.2</td>
<td>1.0</td>
</tr>
<tr>
<td>OtherRES</td>
<td>Portugal</td>
<td>230.3</td>
<td>106.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Energy auction

<table>
<thead>
<tr>
<th>Units</th>
<th>Location</th>
<th>Unitary revenue [€/MWh]</th>
<th>Marginal price [€/MWh]</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>Spain</td>
<td>102.4</td>
<td>102.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Solar</td>
<td>Spain</td>
<td>102.9</td>
<td>102.9</td>
<td>1.0</td>
</tr>
<tr>
<td>OtherRES</td>
<td>Spain</td>
<td>304.4</td>
<td>107.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Wind</td>
<td>France</td>
<td>86.5</td>
<td>48.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Solar</td>
<td>France</td>
<td>144.2</td>
<td>45.1</td>
<td>3.2</td>
</tr>
<tr>
<td>OtherRES</td>
<td>France</td>
<td>326.7</td>
<td>93.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Wind</td>
<td>Portugal</td>
<td>108.3</td>
<td>108.3</td>
<td>1.0</td>
</tr>
<tr>
<td>OtherRES</td>
<td>Portugal</td>
<td>304.6</td>
<td>122.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- Interference with efficient short-term signals
- RES generation supported is producing electricity with higher costs than other cheaper options
Results: costs

- **FiP (fixed)**
 - Total dispatch costs 35% higher than optimal dispatch
- **High production with OtherRES technologies**
- **Energy auction**
 - Lower cost increase than FiP (fixed)
Conclusions

• Long-term clean capacity auction
 ➢ Revenues do not depend on energy sold in the market (capacity)
 ➢ No incentives to generators to sell more energy in short-term
 ➢ No interference with short-term operation → optimal

• Feed-In-Premium: fixed
 ➢ Revenues depend on energy sold in the market
 ➢ Incentives to generators to sell more energy in the short-term
 ➢ Changes optimal short-term operation
 ➢ Marginal prices are reduced
 ➢ Increases generation dispatch costs by 35%
Conclusions

• Feed-In-Premium: floating
 ➢ Revenues do not depend on energy sold in the market
 ➢ No incentives to generators to sell more energy in short-term
 ➢ No interference with short-term operation → optimal

• Long-term clean energy auction
 ➢ Revenues depend partly of the energy sold in the market
 ➢ Incentives to generators to sell more energy in the short-term
 ➢ Changes optimal short-term operation (less than FiP fixed)
 ➢ Marginal prices are reduced (less than FiP fixed)
 ➢ Increases generation dispatch costs (less than FiP fixed)
Co-funded by the Intelligent Energy Europe Programme of the European Union

Thank you very much for your attention