

Market design options to be studied within the 2020 horizon

Sophie Dourlens-Quaranta, TECHNOFI (Market4RES WP4 leader)

Co-funded by the Intelligent Energy Europe Programme of the European Union

2015/05/22 - Brussels

Introduction

- Two main aspects of the day-ahead markets are proposed to be the focus of OPTIMATE studies
 - RES support schemes
 - Demand flexibility
- For each of these two study fields, several options consistent with the 2020 horizon are proposed to be studied
- A first list of indicators which will be used for the analysis of the results is presented

- Market design options to be studied
 - RES support schemes: from Feed-in-Tariffs to Price
 Premium schemes
 - Demand flexibility: from no flexibility to load shedding when market prices reach a certain level
- Indicators to assess the impacts of the studied options

- Market design options to be studied
 - RES support schemes: from Feed-in-Tariffs to Price
 Premium schemes
 - Demand flexibility: from no flexibility to load shedding when market prices reach a certain level
- Indicators to assess the impacts of the studied options

- EC Guidelines on State aid for environmental protection and energy 2014-2020:
 - Aim: Better integrating renewables into the internal electricity market through the gadual introduction of market based mechanisms reflecting the increasing maturity of RES technologies
 - Measures envisaged:
 - gradual move from Feed-in-Tariffs to Feed-in Premium scheme
 - exposing RES generators to standard balancing responsibilities
 - measures to be put in place in order to ensure that RES producers have no incentive to generate electricity under negative prices.

- Within OPTIMATE, support schemes are parametrized
 - Per country
 - Per type of energy (wind or PV)
- For each, the user can define
 - The percentage of generation sold under price premium (the rest of this generation is considered as sold under feed-in tariff)
 - The wind premium average price (€/MWh)
 - The wind Feed-in tariff average value (€/MWh)

- Features of Feed-in-Tariffs implemented within OPTIMATE
 - Fixed regulated price per MWh fed into the grid (whatever the electricity market price)
 - Priority dispatch granted to subsidized energy
 - \rightarrow RES production is integrated as a "must-run"
 - → Since within OPTIMATE the whole generation is offered to the day-ahead market, this is modelled as if RES producers submit bids at the minimum authorized price (-3000 €/MWh)

- Features of Price Premium scheme implemented within OPTIMATE
 - RES producers receive the electricity market price and a fixed regulated premium (extra bonus) over the electricity market price for the feed-in of renewable energy
 - No priority dispatch
 - → RES producers have positive income as long as the market price is not more negative than the premium amount
 - → This is modelled as if RES producers submit bids at "minus price premium"

- Market design options to be studied
 - RES support schemes: from Feed-in-Tariffs to Price
 Premium schemes
 - Demand flexibility: from no flexibility to load shedding when market prices reach a certain level
- Indicators to assess the impacts of the studied options

From no demand flexibility to load shedding when market prices reach a certain level

- Demand response consists in:
 - **Reducing** the load level of consumers for some time when the price of electricity reaches a **high** enough level
 - And/or **activating** the load level of consumers for some time when the price of electricity reaches a **low** enough level
- Implementation within OPTIMATE:
 - As a default option, demand is considered inelastic
 - Demand can be set to have a flexible part which can be voluntarily shed when market prices reach a certain level
 - No consumption shift is modelled

- Market design options to be studied
- Indicators to assess the impacts of the studied options
 - Common indicators to all studies
 - Additional indicators to be analyzed to evaluate the impacts of RES SS
 - Additional indicators to be analyzed to evaluate the impacts
 of demand flexibility

Families of indicators	Detailed indicators	Purpose
Generation mix	Generation from	The impact of market architecture
(per country)	renewable sources	options on the generation mix is the
	Generation from	very first point to analyse: a change in
	nuclear	the generation mix is indeed the main
	Generation from coal	driver to other indicators, such as
	Generation from gas	market prices, CO_2 emissions, etc.
	Generation from oil	

Families of indicators	Detailed indicators	Purpose
Costs and profits,	Day-ahead market	The impacts of market architecture
welfare	welfare	options on variable costs, day-ahead
(per country)	Generation costs	producer surplus and market welfare
		is key in a context of low profitability of
	Producer surplus	certain power plants and discussion
	per type of energy	around capacity remuneration
	source	mechanisms

Families of indicators	Detailed indicators	Purpose
Market prices (per	Average market	The impact of market architecture
market area)	prices	options on market prices is key to
	Prices first and last	analyse, in line with the EU objectives
	centile	of competitive energy prices

Families of indicators	Detailed indicators	Purpose
Sustainability (per	Share of renewable	The objective is to study whether a
country)	production	market design option favours or
	covering the	disfavours the integration of RES and
	domestic	the reduction of CO_2 emissions, in line
	consumption	with the EU 2020 objectives
	CO ₂ emissions	

Families of indicators	Detailed indicators	Purpose
Cross-border	Amount of cross-	The impacts of market architecture
exchanges	border exchanges	options on cross-border flows, price
(per border)	Average price	differentials and congestion revenue
	differentials	are important indicators to evaluate
	Day-ahead	how the complementarity between the
	congestion	national generation parks is exploited
	revenue	

- Market design options to be studied
- Indicators to assess the impacts of the studied options
 - Common indicators to all studies
 - Additional indicators to be analyzed to evaluate the impacts of RES SS
 - Additional indicators to be analyzed to evaluate the impacts of demand flexibility

Additional indicators to be analyzed to evaluate the impacts of RES SS

Families of indicators	Detailed indicators	Purpose
Generation mix (per country)	Wind generation	These figures will allow assessing the impact of changes in support
	Solar generation	schemes on wind and solar generation in more details
Market prices (per market area)	Occurrence and magnitude of negative prices	RES support schemes are expected to have an impact on negative prices

- Market design options to be studied
- Indicators to assess the impacts of the studied options
 - Common indicators to all studies
 - Additional indicators to be analyzed to evaluate the impacts of RES SS
 - Additional indicators to be analyzed to evaluate the impacts of demand flexibility

Additional indicators to be analyzed to evaluate the impacts of demand flexibility

Families of indicators	Detailed indicators	Purpose
Generation mix (per country)	Amount of load shedding	The magnitude of load shedding will be analysed
Costs and profits, welfare (per country)	Day-ahead producers and consumers surplus	These figures will allow assessing redistributive effects of load flexibility
Security of supply	Amount of tertiary reserve power, load curtailment duration	The impacts of load flexibility on security of supply indicators, which are expected to be positive, will be quantified

Co-funded by the Intelligent Energy Europe Programme of the European Union

Thank you very much for your attention

