

Market4RES project in concluding stages:

Main findings and policy recommendations in view of upcoming public consultation

Expert workshop

Ove Wolfgang
SINTEF Energy Research

Project structure

Lead EEG Diagnosis of the TM Lead Comillas Identification of promising modifications of TM and designs of new markets **Quantitative assessment of markets Lead Technofi Lead SINTEF** Pre 2020 (current fleet) Post 2020 (future fleet) **Lead SINTEF** Recommendations and implementation guidelines for market designs

Lead EWEA

Communication and dissemination

Basis for drafting of main findings

- ☐ Deliverables in project
- ☐ Feedback received from Advisory Board meetings, Expert Workshops and Stakeholder events, which have been organized in the course of the project
- ☐ Iterations on a "main findings" document (ongoing)

(1) Initially, markets were not fit for RES

- Traditionally, the RES shares in electricity generation were low in many European countries.
- ☐ Thus, the markets were not designed with their specific characteristics in mind (variable, non-controllable output).
- ☐ Focus on day-ahead market
- Renewables was often curtailed during operation
 - output from RES can be reduced on short notice
 - lack of transparency in operation and curtailment rules

(2) Europe's policy for promoting integration of RES-E technologies has been a success story

- Motivation: limit global warming, reduce energy import, ...
- ☐ RES-E Directives in 2001 and 2009
 - Targets for share of renewables
 - Priority dispatch for RES
 - Feed-in tariffs in many countries
- □ Impact
 - Massive investments in renewable electricity.
 - 2001 2015: Wind-power capacity from 17 to 141 GW.
 - 2015: 1/3 of electricity from RES in the EU

(3) This is not the time to stop supporting RES

- A more ambitious <u>implementation</u> of environmental policy is needed to limit global warming and future mitigation costs.
- ☐ E.g. fewer emission permits
 - ➢ higher permit prices, higher costs for fossil-fuel generation, higher electricity prices, profitable RES generation without support
- ☐ However, this is not the situation today.
- ☐ Financial support for RES is still needed to continue the decarbonization of the European energy system

(4) However, it is time to reconsider the design of support schemes

- Policy instruments (feed-in tariff, priority dispatch) were perfectly fitted in the early phases of liberalization
- Now, side effects of significant RES penetration are visible
 - volatile (and even negative) prices
 - firm supply having difficulties to recover their costs
 - considerable financial support to renewables

(5) No incentives should be provided when electricity prices are negative

- I To avoid start-up costs, thermal power generation may be willing to produce at negative electricity prices.
- ☐ With the feed-in tariff, RES production is also incentivized to produce even if price/marginal value is negative.
- ☐ Support given per MWh should be set to zero whenever the electricity price is below zero.
- ☐ This will improve the functioning of the power system, and reduce (imbalance) costs

(6-1) Design of RES-support mechanisms: Cost-efficiency, risk and use of tenders

- There is no single design that is best from all perspectives.
- Capacity auctions (MW)
 - Does not interfere with markets / price signals
 - Excellent short-term efficiency
- ☐ Support based on energy produced (MWh)
 - Provides incentive to increase efficiency and reliability of capacity
 - Favorable long-term impacts
- Risks and transaction costs
 - Must be considered when assessing the efficiency of a scheme
 - Higher risk, higher interest rate, higher costs (esp. wind/solar power)
 - Auction/tenders (capacity/premium): transparency, standardization

(6-2) Design of RES-support mechanisms: Balancing short- and long-term impacts

Fixed price-premium (per MWh) can provide a fair balance between short- vs. long-term impacts

- ☐ If the following conditions are met
 - No support when electricity prices are negative
 - Price-premium is determined through auction/tender,
 - ... which is transparent and standardized
 - Support is based on produced amount, not feed-in to grid
 - In case of floating premium: Must not be affected by day-to-day bidding and outcomes of electricity market (rather long-term trends)

(7-1) Markets for electric energy: Keep up the momentum in harmonization

- Iterative process to develop network codes (NC) / regulations
 - EC, ACER, ENTSO-E
 - NC for markets: CACM, EB, FCA
- □ Considerable achievements have been made in <u>establishing</u> an integrated day-ahead market
- ☐ We also need focus on implementation for intra-day markets

(7-2) Markets for electric energy: Implementation for the intraday market

- Market integration is probably simpler than for ancillary services, because of long traditions for TSO control.
- ☐ Gate closure in intraday should be close to real time operation so the final position taken before operating can be tuned
- ☐ Liquidity must be increased to improve efficiency
 - Access to cross-border transmission capacity is needed to increase set of feasible trades (e.g. through reserving some capacity to intraday)
 - Some intra-day auctions can be combined with continuous trading

(8) RES-friendly environment for electricity balancing is needed

- Network code for electricity balancing
 - Has good intentions with respect to RES
 - But much is still left open to be specified in the future
- ☐ Important elements for RES
 - Avoid RES curtailment (unless its marginal value is negative)
 - Effective imbalance netting between control areas
 - Markets for ancillary services should be open for RES generation and demand to the extent they can provide it,
 - ... and products should be specified with this in mind

(9) Capacity markets

Several countries have implemented capacity markets, some are in the process of implementation, while others are debating about introducing them.

Our recommendations

- Over-investment though separate national markets should be avoided.
- Allow participation of cross-border interconnection capacity
- Product: financial option with a high strike price
- Amount should be affected by price (to reduce strategic bidding)

(10) Consumers need to be exposed to prices

- Demand-side flexibility (incl. storages) is an obvious response to RES variability
 - Market mechanisms are set to work if:
 - Consumers are exposed to prices (e.g. day-ahead, intraday),
 - and automatic metering of consumption exist.
 - ☐ Participation in markets for real time balancing (MW)
 - Legislation should be open for it, and flexibility products should be developed with this in mind
 - Advanced control is needed
 - Roles must evolve (e.g. aggregators or under system operator's control)

Further process: written communication

- Findings and conclusions
 - Are based on work carried out in the Market4RES project
 - We intend to improve your final recommendations on basis of your feedback (today and in written communication)
- Written communication start next week
 - Main findings & conclusions document will be sent to stakeholders
 - We will ask for written response to <u>market4res@sintef.no</u>
 - Feedbacks will be discussed stakeholder event in Brussels 17th June
- Market4RES deliverables: http://market4res.eu/results/reports/

