

Effects of moving the timing of dayahead markets towards real time

Post 2020 evolution of the Target Model: Quantitative assessments

Fernando Banez-Chicharro and Luis Olmos Camacho Institute for Research in Technology (IIT) – Universidad Pontificia Comillas

Overview

Objective

- Methodology
 - ROM model
 - Scope
- Results
- Conclusions

.

Objective and methodology

Impact of bringing the day-ahead market closer to real-time operation

Bring closer day-ahead and real time

Reduction of wind and solar forecast errors

Reduction of operating reserves

Methodology: ROM model

- Operation model developed in IIT-Comillas
- Used in other EU projects
 - MERGE, SUSPLAN, TWENTIES...
- Unit commitment: represent dayahead market
 - Technical constraints generation units: thermal and hydro
 - Operating reserves
 - Network
- Real-time

Methodology: scope

- Spain in 2030
 - 1 year 8,760 hours
 - Vision 3 TYNDP 2014
- Generation
 - Detailed generation units in Spain
- Real-time is considered
- Network
 - No internal network
 - Interconnections between countries

- Does not imply reduction in dispatch costs
 - When reduction is small for wind (need 30%)
- Until reduction is big for solar (75%)
- When reduction is small for both (need 30%)

- Help integrates RES
 - For wind almost at the beginning
 - Only when solar error is reduced 30% or more

- Why dispatch costs are not reduced?
 - Reduction in reserves only significant for high reduction in forecast errors
 - 30% wind and 75% solar
 - Low reduction of reserves
 - Provided by thermal units do not decrease
 - Thermal generation increases

- Thermal generation increases for low levels of reduction in forecast error
 - Integration of RES provokes the disconnection of flexible generation (hydro)
 - Part of generation and reserves provided by hydro are replaced by thermal
 - More units committed to be able to provide reserves (not at maximum production)

Conclusions

- Small reduction of wind and solar forecast error
 - > Increase of generation dispatch costs
- Reductions in wind forecast error have more influence
 - ➤ Wind is more important in the system than solar

Conclusions

- Bringing closer day-ahead market to real time only a few hours is not worthy
 - Reduction of forecast error is small
 - Do not produce benefits
- Day-ahead market has to be very close to real time to reduce enough forecast errors
 - About 20 hours!
 - ➤ But this is not feasible in power systems like Spain: some units will be automatically out of the system
 - > Other power systems with more flexibility has this possibility
- Alternative: a market scheme like in Spain
 - Day-ahead market followed by intraday markets to re-schedule the dispatch based on updated forecasts

Info: Market4RES@sintef.no

Results and news: www.market4RES.eu

Co-funded by the Intelligent Energy Europe Programme of the European Union

Thank you very much for your attention

