

WP3 Expert Workshop

Market design options defined so far and assessment criteria

Luis Olmos, Pablo Rodilla Rodríguez Universidad Pontificia Comillas

21st April 2015, Brussels

Most relevant pending market design issues

Long-term electricity mechanisms and markets

- 1. Long term CRM mechanisms
- 2. Long-term markets and long-term cross-border trading

Short, and very short term electricity market

- 3. Network representation
- 4. Timing of markets
- 5. Bidding protocols and pricing rules in ST energy markets
- 6. Frequency regulation services

Transversal: the future role of RES and DSR

- 7. Support mechanisms and participation of RES in markets (LT & ST)
- 8. Support mechanisms and participation of DSR in markets (LT & ST)

Most relevant pending market design issues

Long-term electricity mechanisms and markets

- 1. Long term CRM mechanisms
- 2. Long-term markets and long-term cross-border trading

Short, and very short term electricity market

- 3. Network representation
- 4. Timing of markets
- 5. Bidding protocols and pricing rules in ST energy markets
- 6. Frequency regulation services

Transversal: the future role of RES and DSR

- 7. Support mechanisms and participation of RES in markets (LT & ST)
- 8. Support mechanisms and participation of DSR in markets (LT & ST).

Long Term – CRM mechanisms (i)

XXX Preocupación por

Long Term – CRM mechanisms (ii)

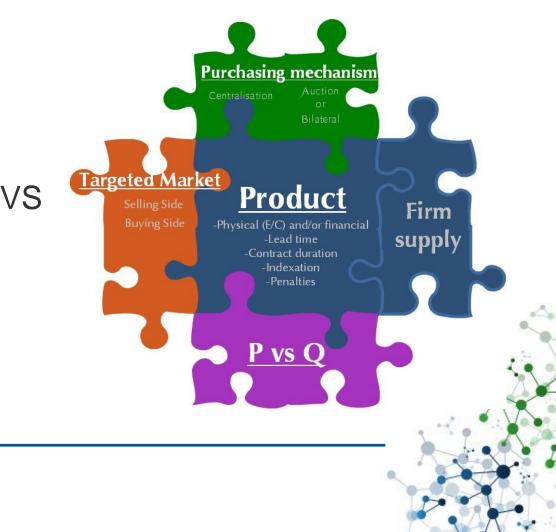
...and still is (target model for SoS, cross border particpation)

Long Term – CRM mechanisms (iii)

Classifying design alternatives: two possible approaches

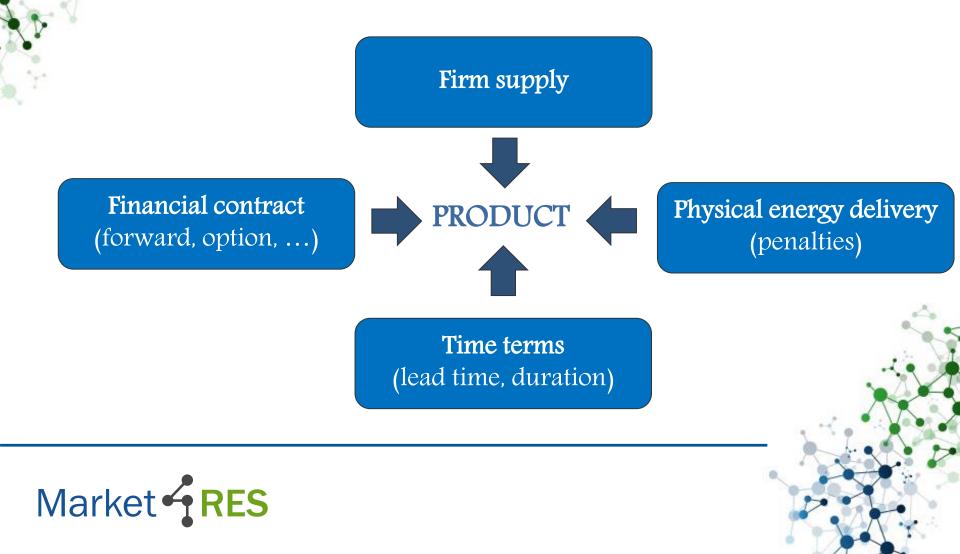
Capacity Markets

Bilat. Capacity Markets


Capacity Payments

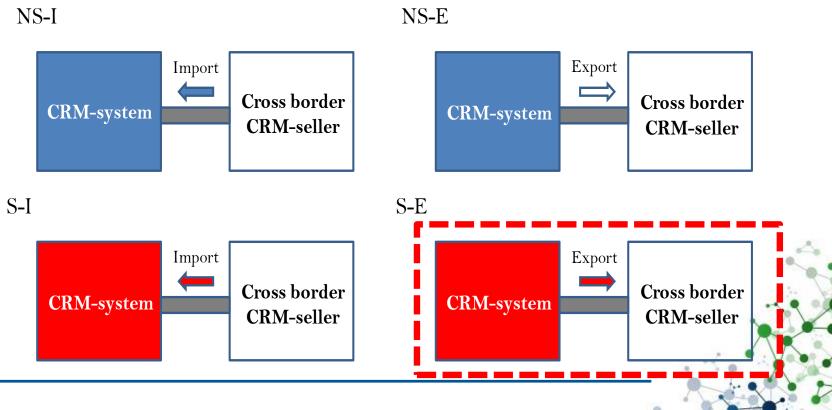
Reliability options

Strategic reserves


Market **RES**

Long-term energy auctions

Long Term – CRM mechanisms (iv)


Design elements: the product of the CRM mechanism as the cornerstone

Long Term – CRM mechanisms (v)

The regional context

• Implicit vs explicit participation

Long Term – Long term markets

Long-term markets

• The major concern is to ensure liquidity

Long-term cross border energy products

- Mayor design elements
 - Physical vs financial contracts
 - Flowgate vs point to point
 - Role of the TSO compulsory provision of the service or not
 - The firmness of the contract

Most relevant pending market design issues

Long-term electricity mechanisms and markets

- 1. Long term CRM mechanisms
- 2. Long-term markets and long-term cross-border trading

Short, and very short term electricity market

- 3. Network representation
- 4. Timing of markets
- 5. Bidding protocols and pricing rules in ST energy markets
- 6. Frequency regulation services

Transversal: the future role of RES and DSR

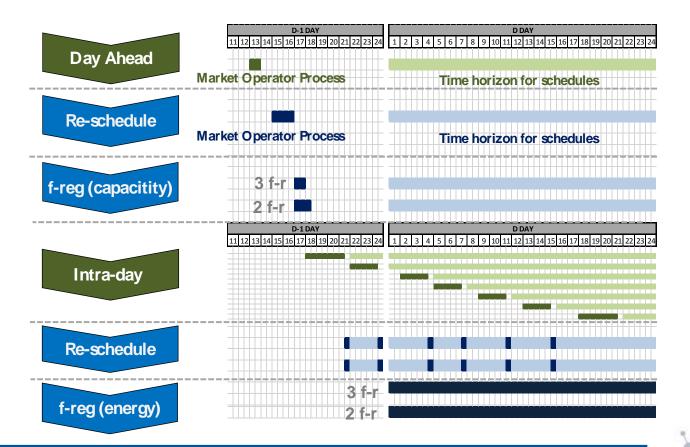
- 7. Support mechanisms and participation of RES in markets (LT & ST)
- 8. Support mechanisms and participation of DSR in markets (LT & ST).

Network representation (dispatch and prices)

Design alternatives

• Zonal vs nodal (for dispatch and prices)

VS



- Capacity calculation
 - Net transfer capacity vs flow-based
 - Different degrees of modeling detail for flow-based

Timing of markets

Design alternatives

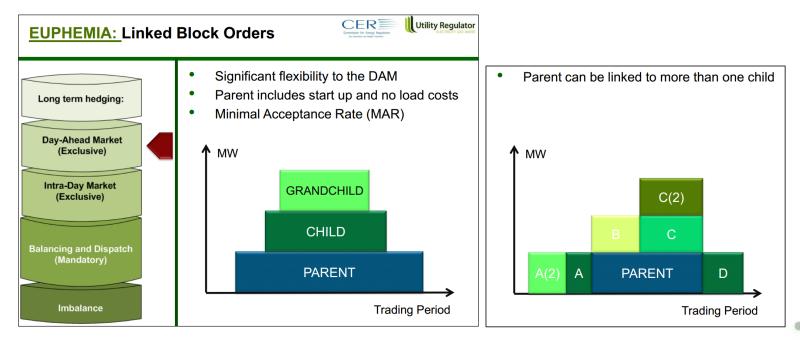
Bidding protocols in Euphemia

5. Market Orders

The algorithm can handle a large variety of order types at the same time, which are available to the market participants in accordance with the local market rules:

- Aggregated Hourly Orders
- Complex Orders
 - MIC orders
 - Load Gradient orders
- Block Orders
 - Profiled Block Orders
 - Linked Block Orders
 - o Exclusive Groups of Block Orders
 - o Flexible Hourly Orders
- Merit Orders and PUN Orders.

EUPHEMIA Public Description



PCR Market Coupling Algorithm

Bidding protocols and pricing rule in Euphemia

Example of complex block orders

Price calculated by means of a sub-problem

Subtask 3.2.4: Balancing markets design options

- Main aspects of balancing markets designs
 - Product: balancing capacity, balancing energy
 - Product direction: upward, downward or joint upward and downward (band)
 - Gate-closure: time at which bids are no longer accepted
 - Activation rule: priority order for the activation of reserve, either pro-rata (proportionally the amount of product contracted) or according to the merit order of energy price bids
 - Settlement: remuneration rule applied to BSPs for service provision

Subtask 3.2.4: Balancing markets design options

- Imbalance settlement :
 - **Pricing system:** single *versus* dual-price
 - Imbalance price: marginal versus average price of activated reserves
 - Imbalance settlement period: shorter periods facilitate the allocation of costs to imbalanced BRPs
 - Publication of imbalance s/imbalance prices: incentive to BRPs to respond to the system's imbalance

Main design options to be assessed are based on existing (and most "advanced") market designs

Most relevant pending market design issues

Long-term electricity mechanisms and markets

- 1. Long term CRM mechanisms
- 2. Long-term markets and long-term cross-border trading

Short, and very short term electricity market

- 3. Network representation
- 4. Timing of markets
- 5. Bidding protocols and pricing rules in ST energy markets
- 6. Frequency regulation services

Transversal: the future role of RES and DSR

- 7. Support mechanisms and participation of RES in markets (LT & ST)
- 8. Support mechanisms and participation of DSR in markets (LT & ST)

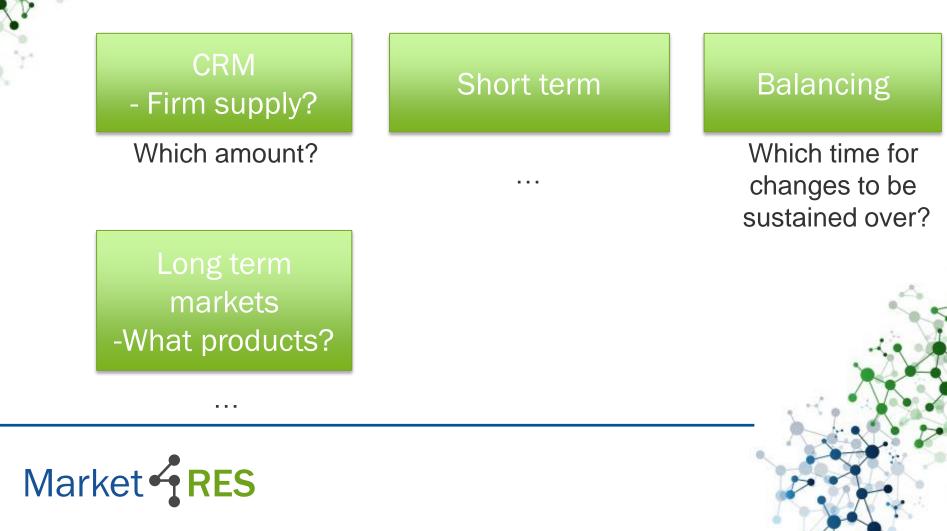
Support and Participation mechanisms of RES in markets

Several dimensions can be considered when devising a support/ participation mechanism addressed to RES generation

- 1: Premium vs. FIT vs. Certificate (quota) scheme vs. Long Term Capacity Auction
- 2: Regulated vs. Auction (for Premium and FIT)
- 3: Ceiling and floor or not (for Premium)

Besides these, other differentiated options may exist:

- Net metering
- No support


Participation mechanisms of demand in markets

- Implicit schemes: whereby demand response is modifying the consumers load profile in markets
- Explicit schemes: whereby changes to the profile of demand w.r.t. a baseline are disptached in markets
 - Bilateral: conditions (price, quantity) applied to the change of the demand level are negotiated with a bilateral counterpart (the supplier)
 - Centralized: conditions are determined in a centralized market

Support mechanisms and Participation of demand and RES in markets

Overcoming barriers to their participation in markets

Assessment criteria of electricity market designs

Main general categories of criteria

- 1. Efficiency
- 2. Effectiveness
- 3. Robustness
- 4. Implementability
- 5. Fairness

Assessment criteria of electricity market designs

Star V	Efficiency	Effectiveness	Robustness	Implementability	Fairness
CRMs	YES	YES	YES	YES	YES
RES - LT	YES	YES	YES	YES	
DSM LT and ST	YES		YES	YES	YES
X-Border Products	YES			YES	
Network Represent.	YES		YES	YES	YES
Timing of Markets	YES		YES	YES	
Bidding Protocols	YES		YES	YES	
RES - ST	YES		YES	YES	YES
Balancing	YES			YES	i. iii

Subtask 3.2.4: Assessment criteria for balancing markets design options

Main criteria	Explanation		
Efficiency : Marginal cost reflectivity, also related to transparency	 Market prices based on marginal pricing <i>versus</i> pay-as-bid Imbalance prices based on marginal costs <i>versus</i> prices based on average costs 		
Efficiency : Cost-causality , also related to fairness & transparency	Related to the design of the imbalance settlement , through which imbalance costs are allocated to BRPs		
Efficiency : Liquidity, also related to transparency	Related to market flexibility (separation of products, gate-closures, etc), which may favor or hinder the participation of all potential providers; existence of technology-specific markets		
Efficiency: Global coherence	Very-short term energy markets (e.g. continuous intraday) <i>versus</i> markets for balancing energy \rightarrow different pricing mechanisms, similar gate-closure times, etc.		
Effectiveness , also related with marginal cost reflectivity	Market intervention (e.g. price caps) may compromise market effectiveness (i.e. TSO has to interfere on the market and redispatch generation in case of lack of bids for a certain service)		
Implementability	Compatibility with Target Model on Electricity Balancing (harmonization & integration aspects), experience with the implementation in other systems,		

Co-funded by the Intelligent Energy Europe Programme of the European Union

Thank you very much for your participation, discussion and inputs

